Joint Detection and Tracking for Multipath Targets: A Variational Bayesian Approach

نویسندگان

  • Hua Lan
  • Shuai Sun
  • Zengfu Wang
  • Quan Pan
  • Zhishan Zhang
چکیده

Different from traditional point target tracking systems assuming that a target generates at most one single measurement per scan, there exists a class of multipath target tracking systems where each measurement may originate from the interested target via one of multiple propagation paths or from clutter, while the correspondence among targets, measurements, and propagation paths is unknown. The performance of multipath target tracking systems can be improved if multiple measurements from the same target are effectively utilized, but suffers from two major challenges. The first is multipath detection that detects appearing and disappearing targets automatically, while one target may produce s tracks for s propagation paths. The second is multipath tracking that calculates the targetto-measurement-to-path assignment matrices to estimate target states, which is computationally intractable due to the combinatorial explosion. Based on variational Bayesian framework, this paper introduces a novel probabilistic joint detection and tracking algorithm (JDT-VB) that incorporates data association, path association, state estimation and automatic track management. The posterior probabilities of these latent variables are derived in a closed-form iterative manner, which is effective for dealing with the coupling issue of multipath data association identification risk and state estimation error. Loopy belief propagation (LBP) is exploited to approximate the multipath data association, which significantly reduces the computational cost. The proposed JDT-VB algorithm can simultaneously deal with the track initiation, maintenance, and termination for multiple multipath target tracking with time-varying number of targets, and its performance is verified by a numerical simulation of over-the-horizon radar.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model

Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...

متن کامل

Incremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals

This work discuses a novel algorithm for joint sparse estimation of superimposed signals and their parameters. The proposed method is based on two concepts: a variational Bayesian version of the incremental sparse Bayesian learning (SBL)– fast variational SBL – and a variational Bayesian approach for parameter estimation of superimposed signal models. Both schemes estimate the unknown parameter...

متن کامل

Real-Time Interference Detection in Tracking Loop of GPS Receiver

Global Positioning System (GPS) spoofing could pose a major threat for GPS navigation ‎systems, so the GPS users have to gain a better understanding of the broader implications of ‎GPS.‎ In this paper, a plenary anti-spoofing approach based on correlation is proposed to distinguish spoofing effects. The suggested ‎method can be easily implemented in tracking loop of GPS receiver...

متن کامل

Effect of Curved Path Monopulse Radar Platform’s Grazing Angle on Height of Floated Targets Detection

Monopulse radarsare one of the most accurate tracking radars used to guide various platforms. Detection and tracking of surface targets with these radars are performed in order to point strike targets. Sea clutter presents challenges for detecting floated targets and in addition to affecting detection height, it can cause errors in monopulse angle finding. In this paper, the airborne monopulse ...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.08616  شماره 

صفحات  -

تاریخ انتشار 2016